.

GRANTS.GOV™

FIND. APPLY. SUCCEED.™

e
o

System Architecture Document

Grants.gov System
V20

April 27, 2007

April 26, 2007 Page i
System Architecture Document Document Deliverable

Table of Contents

1. OVerall SYStEM AFCRITECTUIE.ccui ittt b e bbbt s e b e b e sbeebesbesbeene e e ennas 1
2. ATCHITECTUNE SUMIMANY . .c.eiiiiiiiiiiet ettt ettt bbbt bt he e s et e st e se e e b e e b e e bt e b e et enbenbeebesbeebeebeeneenteee 2
TR I -Tod o To] (o)A = o PSS 2
Yo | 0T Ll AN o a1 (T (0 T I Y SR 2
4.1, SECUNILY ATCRITECTUIE «...oitiiitiite ettt b bbbt b bbbt b e e b e b ettt b e bt e b e et 3

5. Primary Features of Extended Capabilities ArchiteCtUIe.........cccveveeeieiirere e 4
5.1, GOO0QIE-BaSEU SBAICHeieiieiie e bbbt bbb bbbt e e 4
5.2, AJODE BaSEU FOIMMS PrOCESSINGeiviteitirieiiiatiaeeie st st ste sttt esee e asbeseesbesbesbesbe s e esee s ebesbesbesbesseeneaneeneees 7
5.3, SEIVICE INTIASIIUCTUIEoviite ettt et ettt ettt et st e et b ne e 9
5,31, SEIVICE TUBNTITIES .evevieviiteietiite ettt sttt et e e b et b et e ebe st et e ebeseebeebeneereabeneerens 10
5.3.2. SEIVICE PATAMELETS ...vvveieeeieeeiesieieeste e steste e e e et e testesbestesseesee e es b e eesaesbesse et e eseenseseeseeeeseeateeteaneereeneensees 11
5.3.3. Application processing parameters, status, and processing informationccoccoevvvveiniercrercnen, 11
5.3.4. Implementing the Service INFraStrUCIUIEcccvvviieiecc e 12

T BT | r= W o] 11 =T (0] TSSOSO PROPRPRPN 15
A =1 o (o) 4 0 T=Y o AN o a1 (=T (0] = OSSR 16
R o1 0] 01V 1 1 S TP ORI 17

List of Figures

Figure 1: 2007 Grants.goVv SyStem ArCITECIUIE..........cuoiiiieiiesiericeee e 1
Figure 2: Simplified View of Software ArchiteCture Layers.........cccocvvivereiiieiieerie e e siesieennens 3
Figure 3: Conceptual ArCNITECIUI.ceiiieie ettt 4
Figure 4: ReNdering SYNOPSIS......uciieieiieiieieieeseesteeseeseesteeseessaesteaseesreesseassesseesseeneesseesseessesseessens 5
Figure 5: Class GO0GIE SEAICN.........coiiiii et 6
FIQUIE 6: FOIMS PrOCESSING ..evveveeieiiiesieesie et eeste e e stee e e ste e s teesteeseesraesseeneesseesaeeneeenaenseenseaneesens 7
Figure 7: LiveCycle FOrms ArChItECIUIEooviiieiiiie et 8
Figure 8: LIVECYCIE ASSEMDIETeciiiie ettt re e e e e 8
Figure 9: Class AdODE CIaSSES.........euiiiiiiieiiiie ittt sneeae s 9
Figure 10: Service INFraStrUCIUIEcoueiieiece et re e 10
Figure 11: Class Service INTraStrUCTUIE..........ooiiiiiiieiieie e e 13
FIgure 12: Class DIAQIAIMcuiiieiieieiieseesieeee s e e et e e saeesee e e steasaessaesaeeseesreesseaneesseesseaneeeneens 14
Figure 13: Class SEIVICE ULccoiiiiiiiie ittt 15
Figure 14: Deployment ArChITECIUIEcueiiiiie e 16
April 26, 2007 Page i

System Architecture Document Document Deliverable

)

-
= GRANTS.GOV”

1. Overall System Architecture

The extended capabilities Grants.gov system architecture is based on the previously existing system
architecture. Our approach has been to preserve the healthy components and remove the components
that negatively affect performance and scalability. Legacy opportunity data and application data are
supported through integration at the Data Access layer. In the previously existing System, the Data
Access design continues to allow connectivity to only a single database. The underlying
implementation has been modified to include queries to the legacy Database and the extended
capabilities Database. The Mechanisms are described in more detail in the Design Document.

The schematic below shows the revised Grants.gov system architecture with extended capabilities. It
includes, new, as well as reengineered components. The legend in the schematic indicates the color-
coding that distinguishes the new, reused, and reengineered components. The changes on the client
side include the Adobe Acrobat Reader and the ability to search attachments. On the Server side, the
changes include the introduction of the Adobe LiveCycle forms server, Google Search Appliance,
and the reengineered Apply process.

Interface to Interface to
Interfa
Windows Lintoe il 055 Grants.gov Grants.gov
Agency Download of Opportunities - "
e Find Opportunities
Completed lications Management
Adobe Acrobat ks g
Reader System to system ;
g Application Submission User Management Create Login
Unix Macintosh
CDFA, CCR, and ORC Downloading of Downloading of
Data Replications completed applications opportunities
@
Applicant 8
St ® Apply Process | .
g Separation of Storage Area Network Aggxé_lsfeé}ydm}e
- Attachments and XML
© Schema
(@] ;
] Bea WebLogic
Agency o Virus Scan of Application Server
Server ‘_g Attachments Google Search Engine
o Validation of XML
iJ"—: Oracle Database Server
Packaging of Authentication Service
Aﬁg:fy Application for Agency
Deployment
L VPN Server
Email Server
SUN Servers
DUNS
CFDA Legend
CCR 0,
Reused New Reengineer
Figure 1: 2007 Grants.gov System Architecture
April 26, 2007 Page

System Architecture Document

System to System

Agency User

Applicant User

Document Deliverable

)

-
= GRANTS.GOV”

2. Architecture Summary

The extended capabilities Grants.gov system architecture is the result of some strategic and tactical
architectural decisions. The strategic architectural decisions include the following:

e Replacing PureEdge based forms with Adobe based forms.
Introducing the Google Search Appliance.

Replacing iPlanet based Queues; Queue Listeners with Plain Old Java Objects (POJO) based
Services.

Replacing InFlowSuite rule sets and rules with POJO based rules.
Retaining the current database schema.

More conscious use of Spring and Hibernate frameworks.
Streamlining error processing.

Using the capabilities of the application servers.

The tactical architectural decisions include the following:
e Retaining the current set of Java Service Pages (JSP) and servlets.
e Retaining the current Data Access Objects (DAO) and Hibernate for database interactions.
e Removing embedded Standard Query Language (SQL) and converting to Hibernate objects.
e Removing InFlowSuite dependency.

3. Technology Stack

The revised extended capabilities system is being deployed under Weblogic 8.1.5 and JDK 1.4.1.
Adobe 7.0.8 is being used. Open source frameworks such as Spring and Hibernate form the
foundation on which new components and services are being developed.

4. Software Architecture Layers

The existing system software architecture had no clear separation of layers. Even though several
popular frameworks like struts and Hibernate had been used, there was no clear delineation of
responsibilities between presentation, business/services and data layers. This made the task of
refactoring and reengineering very difficult. The existing code base was quite fragile so that making
large-scale changes jeopardized the delivery of a stable, industrial strength solution in April 2007.

The extended capabilities Grants.gov system architecture includes defined presentation, business, and
data access layers. The schematic shown in Figure 2 provides a simplified view of the new software
architecture layers and the components and services that are part of each layer. Following the Model
View Controller (MVC) paradigm, the reengineered architecture consists of presentation, business,
and data access layers.

The presentation layer will include Spring, MVC, and struts. The search application initially uses the
struts framework at a very rudimentary level. Future releases will take advantage of the frameworks
more comprehensively.

The business layer includes POJO Business Services and infrastructure services. The infrastructure
services include Adobe product API’s, existing InFlowSuite services that are reused and re-factored,
and support for Google search.

April 26, 2007 Page 2
System Architecture Document Document Deliverable

r

-
= GRANTS.GOV®

The data access layer will include custom data access components built using the InFlowSuite
utilities including Hibernate’s base data access components. Our goal is to eventually convert all
custom data access components to Hibernate-based data access components.

The extended capabilities system of April 2007 is configured to process only the opportunities
created in the April 2007 extended capabilities system. Figure 2 addresses only the extended
capabilities Architecture. The Architecture for processing IBM Workplace Forms remains intact.
The previously existing Architecture will be used for processing legacy opportunities. Modifications
have been made to the new Search module for users to download the packages created for old
opportunities.

Modifications have also been made to the Grantor User Interface to retrieve old, as well as new,
opportunities. These changes are also discussed in the Design Document.

There is no direct relationship between Spring and Inflowsuite frameworks. Figure 2 shows that
Spring and Hibernate are Infrastructure Frameworks. Currently, the Grantor and Grantee User
Interface components use the Inflowsuite services for implementation. Once the User Interface is
redesigned, this dependency will be removed.

Search gty

S0t Presentation i i
Data | [Search | | 2 s sy i e Arsly Apply g
Persister | |Handl o ice ices || Services s
Adob 2
Search Service obe : 3
- =Y §
H

Business

Hibernate

Architecture Layers

Figure 2: Simplified View of Software Architecture Layers

4.1. Security Architecture

The Security Architecture of the extended capabilities system has not changed from the earlier
system implementation. Changing the Security Architecture was not part of the scope for this
release. When the User Interface is redesigned, the authorization component will be refactored and

April 26, 2007 Page 3
System Architecture Document Document Deliverable

»

-
= GRANTS.GOV”

redesigned. Standard Java Authentication and Authorization Service (JAAS) APl will be reviewed
for implementation. The implementation of the left navigation bar uses a few Inflowsuite core
classes as well as custom classes. Changes have to be done to remove the core classes.

5. Primary Features of Extended Capabilities

Architecture

One of the key features of the extended capabilities Grants.gov system architecture is the utilization
of the Google Search Appliance to replace the existing “find” functionality. The current find
functionality is limited to searching the metadata associated with Synopsis and Synopsis title. There
was no support in the earlier system for searching the attachments or other website content. Google
Search Appliance offers a more comprehensive solution for implementing search functionality. The
Google Search Appliance is an integrated hardware and software solution that provides a simple
HTTP based GET or POST interface. The Google Search Appliance provides the ability to search
300,000 documents.

The Google Search Appliance-based search has been integrated with the already existing Grants.gov
application using the universally accepted Google User Interface.

5.1. Google-Based Search

There are two parts to the integration of Google-based search into Grants.gov. The first part
involved incorporating the Google-based search solution involved persisting synopsis and
attachments data in a File System (Google Search Appliance is File System based; Google Search
Appliance can search in databases.). This has enabled the Google search engine to crawl and index
the contents. The legacy system was modified and a new component was added to create a new
HTML file for synopsis and save it to the File System. Figure 3 shows the new component as the
File System Persistence Engine. The Google Search Appliance has been configured to “crawl!” the
file system and index the contents. The contents in the File System will be arranged in a directory.

oogle Search Appliance, Synopsis
&
Attachment
r s
1
4 \ Weblogic 8.15
Figure 3: Conceptual Architecture

System Architecture Document Document Deliverable

»

-
= GRANTS.GOV”

The second part of integrating Google-based search into Grants.gov involves rendering the search
results. Figure 4 shows the conceptual flow for rendering the synopsis search results.

Synopsis Search
Request
: E—
Synopsis Search 1
sl [
7
3 5
1. User submits a free form search
request
2. Servlet passes the requests to the
File System Business Service

3. Business Service applies rules
and passes the request to
SearchHandler

4. SearchHandler connects to the
Google Search Appliance,
receives result, converts results into
List of SynopsisLineltem objects

5. The SynopsisLineltem is returned
6. Sameas5

7. The SynopsisLineltem List is
displayed

Figure 4: Rendering Synopsis
The legacy Search module code has been modified and a new Search Handler has been added to pass
search requests to the Google Search Appliance. The same information that is currently used in the
existing system for display is extracted from Google Search Appliance using GSA-JAPI: Java API
for interacting with the Google Search Appliance™. The same Search Result Collection that the
previous user Interface code used to display the result of a search is used to render the search data
returned by Google Search Appliance. The extended capabilities Architecture also provides
enhancements in the form of searching through synopsis attachments.

The class diagram shows the details of the File System Persistence Engine and the Search Handler.
The File System Persistence Engine is implemented as HTMLGoogleableDataPersister and the
Search Handler is implemented as GoogleSearchHandler. The class diagram (Figure 5) also shows
key classes such as OppSynopsisService and SearchAction that have been modified.

April 26, 2007 Page 5
System Architecture Document Document Deliverable

g

[5
-

GRANTS.GOV™

ola cc Google Braroh)

SexcimdeloFerader
HTML GoogleableCata Perd cr

resBurdie : Fesource Bundle = Resource Bundie ...

=id SyncpAs0a bR Bemenl, SHng, O ble o tucid

geak Newlhummysyregdglorg) (Bynopds

gEIHTILD 3BToliH e Fordoogl eSeanhirg(Op pocluni ly) : SHng
gelNewbummyQpporknl b) :Oppochani

malrgSkirg(D tudld

perdsEzadable bakx(Oblec) udd

wri e SncpdsAliahme nSynog 42, Syncg 4 Al bdmen) tucd
wil B SyncgdsAllathime nkNowSynopds) : udd

wrl e SyncpAsNovDp pee bari Iy, Siirg) tudid

CGoogleBramhHandlor

resBurdie : FexourceBundle = Reource Bundie ...

mplyCorerainiPreperies, lembkx, SHrg) jucld

aeak lerakaSHrg) : lemke

aeak NewAllachme nibaBEnng, Sidrg . SHng, Sidrg) : SzarchRead WO, AlbdmeniD ab
aeak Prop erle sfrom Szarch lem Sseardnlem § : Properies

aeak SzxdRead{Bemen) : Szarh Read V0

aeak SzadRead VO From KT L(LI2)L, Bemen : SzarchRe 24 W0
doSearchNow(Preperie £, U sucid

Al Read O FremAlbahmenkBemenl, UsD: vald

1 Read (0 U 2iFrom >JALGENND, Liz0 : uild

ge IRead XA LF rom Google Minl(Properiies) : Enng

rardie Alschm enMap , Search Read 1vD) jucd

rardle BadcSzach(Szachilems) : Uzl

hardie SearchByAge noEe axchiems) : Usl

rardie SeachByCalegor=e achiems) : Usl

malrgEinrglD :uald

relfeued weryf romSearchllemaEe archiems) © SHng

ANk rise:.
SearchHondar

- £

reecte Mo Ug

mrﬂasmsr.@::rﬁenﬂ'ﬁmﬂ Lig
terde SeaciEy (e ySerniterny (Lig

Rrciaction
8earohantion

GLOSE_DATE_SORT_TYPE: SHrg = *Close Dak® {ea Only}
Ta: FirdSznd esdmpler= Find SznlceAdap...

QMNE: nkEger = rew nkger(l) e Onlyg

zoriiapping: Hastilap = radl

ez alefacloniMapping, Aclonform, HipSerde IRequesl, HipSerue ﬁ.upom:; 1 Adlonf covard
1ird Re WAord0 pp oe bl W0 |, Lorg) : O ppoe bl K0

pepulak Form (auerydble d, Seardhf om , Szardhlem £, i keger, SHng) : Searth Fom
Seachicion)

= ExlaueryOblec), Bkirg, SHng) :ucd

OpposurtySentce
OppBynop dsBervioe

<0f: Logger = Loggerge ilogge...
dacfadony: DAD Fackony = new HibemaleDA...

= d0ppSyropA=0 pp cehnlly, SHrg) : vold
= d=ynop AS=mnopAs tuold

= 45y rop AsAlbrmen Snogdsalacmen : vdd

= dSy g AsAlchm eniLizD : vold

dele e Snopax0ppochurily) @ vold

dele ke SyncopAsAliathme nkLong) jucld

dele ke SynopAsillachme nkBy Typ e Key(Lorg, SHirg) tucld

dele e SnopAsAllUzKLIZD udld

doesSyrogd £4sKLorg) hodlean

ge K ppSyrepAKLorg) (Opponanlly

ge IRzulden ByType (Long, Sinrg) : Lorg

ge Byreg 4 L Long) (Smopds

ge Byreg 4 Albame niLorg) : Syropdsalbamenl

ge Eyregd AlbmeniDAO § : TSyropd Al ahme nlbAD

ge Eyregd Al barmenk{leng) : LIl

ge Eyread4 DA00 (Syrep 45040

ge MO pporknl yCHabA0 Q - TOpporknl CHabAd

ge MEyroep 450 A0Q @ TSyrop AsDAO

SynAlacmen MovoEmogdsaliactme nl @ TEnopdsAliame nl
Eynaliachme nToBo(TEynog 4 S4 ibchmen : Synog 4 s bahme nl
wpdaleSyrepAd {SropAas) : vold
wpdaleSyropd 540 ISmnopasaliat

AT TDT DT * T+ ¢ ¢4 4 64 4 46 4 &4

) uold

April 26, 2007
System Architecture Document

Figure 5: Class Google Search

Page 6
Document Deliverable

)

-
= GRANTS.GOV”

5.2. Adobe Based Forms Processing

In the extended capabilities Grants.gov system, Adobe PDF forms technology replaces the PureEdge
based forms. This necessitated changes throughout the previous architecture and code base. PDF
Forms replace the PureEdge forms. The Schematic in Figure 6 shows an overview of the business
process flow associated with Forms Processing.

? ,

General
. Load Forms Update
Deliver Adobe Forms (XDPs Dynamlcs to Repository —» Technical
1Al Library
Manage Application :
Package templates Grants.gov - | Stitch Forms | ,| Assign Rights
Agency
User e
Submit i Transform |
> Grants.gov > Assembler | —» LCF —» | XML m1 ;
Applicant

Figure 6: Forms Processing
There are four main aspects to Forms Processing:

1. Stitching

2. Reader Extension (Assign Rights)
3. Separating Attachments from XML
4. Generating XML from PDF

These are addressed through standard and custom components from Adobe.

Stitching is accomplished through custom Java components. Adobe forms are stored as XDP files;
the Stitching component takes multiple XDP files and produces a single unified XDP file.

Reader Extension allows the read only PDF forms to be presented as PDF forms that can be
completed (filled). This is accomplished programmatically through API’s provided by Adobe.

LiveCycle Forms API is used to extract XML from PDF documents. The LiveCycle Forms
Acrchitecture is presented in Figure 7. The RMI based EJB API will be used to convert a given PDF
document to XML.

April 26, 2007 Page 7
System Architecture Document Document Deliverable

»

-_"".: GRANTS.GOV"
Web Server J2EE Application Server

EJB Client API |
[Java)

SOAP Client AP
(Java)

A
Microsoft .NET imcl

Client hssembly Data Managesr Module

Figure 7: LiveCycle Forms Architecture

LiveCycle Assembler EJB API will be used to separate the attachments from the PDF. The
architecture of the LiveCycle assembler is shown in Figure 8.

When an applicant submits a completed application, a PDF containing the forms and the attachments
gets transmitted from the client side to the server side. On the Server side, the Assembler product is
used to separate the attachments from the forms, and the LiveCycle forms API is used to extract the
XML. The XML is validated against the Opportunity Schema.

Client application Administrator
LiveCycle Assembler
Data Manager Module Data Manager Module
o
or -
QPAC API) Font Manager Module
Data Manager Module IMX Monitor

I: LiveCycle Assembler components
|:| LiveCycle sarvices installed with LiveCycle Assembler

Figure 8: LiveCycle Assembler

April 26, 2007 Page 8
System Architecture Document Document Deliverable

g

[5
=

— GRANTS.GOV™

placcAdoberClaca s)

Form cBerver

+
*
*

exrackM KHIpSenie IRequesl) : Dubuonkxl
ge ndere F rg) : hpulEieam

Buc=ubmITEd la B A=A G upulcon Exl) : uold

ETTRNTR [

e B R

appendChild Node A Node , Node LizD : Node
SppEndAmITS @, Pooament, Nede) : udd
gESEDom locumenk) : booanend
GelBom erdauasdip k) : Siing

GelBomder>M LSidng , Sring, Sldng) : Sldng
pelfirsiBemeninede(Mode Lish - Node
pECONLDom By E2(DoCUmEnD :byED
REDOALDCm Nede ByEANcde) Dy ED

oad By E 5 [T DoOQUmE N
parzXmi(booimenl, Node) :Doaimenlfragmenl
selAlinbu e value(Mode , SXing, InD : udd
wiieByesToflle@ykEd SHrg): uold

FoaderErfndonc

*
-

remoue Uaixge Righisflie ,Srg, SFing, Sidng . SWrg, Sidng) @ by le]
selUsszge RighFlie ,SHrg, Sking, Sidng,SHrg, SFing) : RpuE Eam

“OPUHIC
= alMbuk Kame: Sring
. = T rg="UUG_FF feadorniyy
. X hg = "pogE adon
-

SUBFO RM_TAG: Sifng = *subtecm® Fe3d 0 nly

O

e e e

=dG UID FerFormX0DPWrapper) by

axmble fragmenlap<0 PiikapperD : booumenl

Fxmble rmmenlzlorblplay perlD byl
FxEmBlEMJIple TeEmplaE LA DPUKpperD : BYED
axmbleMulple Templak sTesKX0P Vapperd) byl

e mbleMu Iple X0 PK0 PUapperD 0y ED

asmbleMul Iple X0 PEInDieM aske X0 PlivappedD :byked
GErE@E Formes ME BdaBdowmeni, X 0F Vrappem) : Node
gErermE Fragmen Goumenl, TPEN) - €
gEremE Templa a coJmenl, mperlD ;. Node

pe lhsmmbled @y e byed
pelBcdyPageNcde(booumen @ Node
g MazerPage Node(booumenl) : Node

pe Euwvom Nede(booumend, InD @ Node

ge XM LD alafrom X0 PP adage(bye0) byl
nerlFmgmen ppEdl,InG : beoumen!
remoue > Liafrom X0F Pacege (X0Piirmpper) i byl
rEmoue I L0aBfrom X 0P PacegeMyED : by el

re Heue Named Subom A booamenl) : Hashilap

2 Labdnkxb PPadage (0P Vapper, hyhﬂ_] by

2 do Aiftesnpd Steans

wshlos
Esmd4:inputdiream

= bresklines: boclean
- butern bye @)

- buikrleng b Inl

= encode: boolean

- lireLeng h: Inl

= numEigBykes: Inl

- pedlon: Inl

hpulSreamfauale. npulzieam)
npulSream{aualo. hpuEeam,inl)
read() :inl

read(by le(),Inl, Ini):Inl

LICITR 1]

by lesTo D yle[), Eking) : Ering

ge By e Armaykrom hpulSream (irguSlream) : byle[]
pelBykezFrom Flle(Fle):byeQd
gelFlieNameg=ring) : Srino(]

e Flie A==Fing(Sring) @ Siing

EpIox Badel= N hfowadsla(Sidng) : Sidng

DR

¥ DPArapper

COMPONENT_FRAGQ: Inl= 1 feaddniy}
conkenl: byle @)

tagmenType: Inl

guld: Sidng

Inli3ud: SHrg

LINK_F RAG: Inl =0 {e=ad0nly}

rame: =ring

I

geonkeni : byled

ge lFagmenTypeQ :inl

ge 2udQ : Sidng

ge lird \3uldQ :SFirg
geiNameQ : Sking
=IConlen by le[D :uold
=zlfrgmen!Type(in :ucld
= |Guld(Sidng) : ucld

IR U d(Sring) : vold
=zIName{Sidng) : udld

X0 PUtrap pe by ke 0)

X0 Pyiappe (Sring, Siing by eD

R E e

22 jo SiterOutput Strex e

wsblce
Bacedd OubutBfram

= bs: byle @)

- breaklines: boclean

= burer: byke (D

- buterLerg h: Inl

- enowde: boolean

- lineLerg h: Inl

= pedllen: Inl

= sxperd Encoding: boolean

dozQ tucld

TushBama+Q tucld
OulpuZreamfauvaloSupuEieam)
OulpuEramjavalofSupuEirean, Inb
reame Encodirg(tucld

arpend EncodingQ : vold

wiegni :wold

wel e@ylef), Inl, InQ uold

R

Excephion
EForm Exopphon

T

Efom Excep lonQ

Efom Excep lon(SHrg)

Efom Excep 1on(EHrg , Throvable)
Efom Excep lon(Throwabie)

Figure 9: Class Adobe Classes

5.3. Service Infrastructure

Using the earlier Grants.gov system, submitted applications are processed using a combination of
Queues, Queue Listeners, and Queue Rules.

April 26, 2007
System Architecture Document

Page

9

Document Deliverable

»

-
= GRANTS.GOV”

REJECTION SERVICE
Other
Query Status
Services Reject Applications
Notify Applicant
INTAKE SERVICE RECEIVING SERVICE ACCEPTANCE SERVICE ~ PACKAGING SERVICE
== NI
Respond to APPLICANTS Q tatu: Query status
UPLOAD, STORE VALIDATE FORMS e PREPARE PACKAGE
XML + Attachments VALIDATE OPP SCHEMA VALIDATIONS For Agency
Create Status Record Update Status Update Status Update Status
Log Operation Log Operation Log Operation Log Operation
’ ' ,[V.
Storage Area Network
FILES TStatus TParameter TError DATABASE

Figure 10: Service Infrastructure

The Service Infrastructure provides a substrate for building POJO-based services that replace the
current InFlowSuite Queues and Queue listeners. Service Infrastructure allows the system, as a
whole, to be rebalanced or reconfigured dynamically by changing the processing parameters of
specific services. It offers the following capabilities:

e Ability to change application processing parameters without stopping or starting the
container.

e Ability to change application processing without interrupting a transaction in progress.
e Location transparency - Ability to deploy services to any container.

To achieve these goals, processing parameters are stored in the database and checked periodically.
Container-level processing parameters are stored in a system parameter table (TParameters), and
checked at startup and when a transaction is completed. Application specific parameters are stored in
the application control table (TStatus) and checked for the next transaction to be processed.

We have carefully analyzed the current workflow and mapped it to a set of autonomous services. The
different Services and their responsibilities are shown in Figure 10. Each Service maps to a
significant step in the Submission Processing workflow, such as Intake, Receiving, Rejection,
Acceptance, and Packaging. The Service Architecture uses a shared File System to store incoming
applications. Once the applications are processed, contents of the application are also stored in
different database tables such as TFile and TAttachments.

The Architecture uses the concepts of Service Identities and Service Parameters to implement
individual services.

5.3.1. Service identities

A Service running in application servers (containers) needs to acquire and know its own identity,
then query the processing parameters assigned to that identity.

April 26, 2007 Page 10
System Architecture Document Document Deliverable

)

-
= GRANTS.GOV”

The service name is hard coded into an application. The code performs only one service. The
service identity is acquired by reading the URL of the container in which it is running. Therefore,
only one service of a specific type runs in a container. However, multiple containers may perform
the same service. The ServiceConfigurator Component encapsulates the logic associated with
starting different services on different containers.

5.3.2. Service parameters

The service reads the TParameters table to acquire the concurrency level of the service. When
running, the service will launch as many concurrent threads as the parameter specifies. So, even if
there is only one service in a container, the level of concurrent processing is fully adjustable.

5.3.3. Application processing parameters, status, and processing information
To facilitate the processing and tracking of grant submissions, the TStatus table is used.

Upon creation of a submission in the system by the allocation of a unique id (process_id), a row in
the TStatus table is immediately created, and the status information entered. As the processing
progresses, the status is updated by each individual service that is part of the Submission processing.
The status table is queried by each service to determine the next submission to be processed. To
provide flexibility in processing, the status table may contain several control fields that can be
updated by the system or an operator to control the applications to process. To facilitate the tracking
of applications by the help desk and reporting activity, the status table also contains a few de-
normalized columns that contain submission information stored here redundantly for performance
improvement.

Unique status codes are assigned to each event or submission when they enter a service and exit the
process. The status code is also a “reservation” in such a way that only one instance of a service
grabs the submission and processes it. When the service is completed successfully, the status is set to
the service completion status. The status update is its own independent transaction. To change a
status, a locking mechanism is used that prevents other applications from being affected. The *“Select
for update” with the “no wait” clause database technique is used. The select locks the record. Other
queries that attempt to get the same record will then fail immediately and not wait for the record to be
released (no locking). The “commit” must immediately follow the status update statement. All
services have to test for failure when querying a record and a race condition has occurred. This is
accomplished through LockRow, a stored procedure. A ServiceUtility class encapsulates the stored
procedure and provides higher level Java API’s.

Services also implement retry behavior. To implement the retry effectively without blocking a queue,
a delay is built in. The status is reset, or set to a specific retry status, and the retry counter is
increased reliably to stop processing when the limit of retries is reached. The retry mechanism,
combined with the immediate commit of the status update is used to avoid locking the processing
queue and race conditions for the same submission. It also guarantees that the record will be
processed only once despite multiple instances of services on multiple servers.

The status update and record locking mechanism has been carefully isolated as an independent
transaction which does not perform any other business functions, is extremely fast, and is closed by
its own commit or rollback operation. Essentially, the independent transaction consists of:

e Open a transaction
e Select one row and lock it
e Update one row

April 26, 2007 Page 11
System Architecture Document Document Deliverable

)

-
= GRANTS.GOV”

e Commit the transaction
e Or in case of failure, rolling back and explicitly releasing the lock
e End of transaction

Other resources and other applications are not affected and cannot be locked by the status update
statement. There are no foreign keys on the status table. Only one row in one table is locked for a
brief moment. The entire operation is designed to be completed in a few milliseconds. The rate of
transactions, (application submissions) even at peak periods, makes it highly unlikely that two
applications reach the same exact state of processing at the same time. If such contention should
occur for a specific row, then the second process trying to access a locked record is designed to wait
and retry. In the meantime, the first operation will be completed and committed and the status will
have changed.

If the database crashes at the exact moment this transaction is opened, the transactions are rolled back
and there are no locks when the database is recovered.

There is no anticipated scenario within the system where the status record would remain locked.

If such a locking event were to occur, for an unanticipated cause, a general monitoring process is
being put in place to report on transactions that remain in a working status over a certain period of
time, (similar to the “stuck” applications in the earlier system). If an application is not being
processed for any reason, the system administrator can change the status manually, by updating the
status table with an ad-hoc tool. If the record is locked, the administrator can override the locks.

Note: The “Select for Update” mechanism has a poor reputation since inexperienced users and
programmers can lock numerous tables and rows with ill-advised transactions or going for lunch
before issuing a “commit” statement. The design for the Grants.gov architecture, as implemented, is
a very controlled and discrete transaction, limited to one record in one table followed by an
immediate commit or rollback. Therefore, the locking of resources is a highly unlikely event and not
a concern.

An alternative to the database based approach, unique selection and locking, can be achieved in the
J2EE stack and locking of records in memory. However, the locking must occur across multiple
independent containers. This is the primary reason to use the database approach.

By updating the status code to a previous status in the processing cycle, the submission is then
eligible again for processing at the next step. It will be automatically selected and re-processed in the
next iteration.

Resetting a status code may be a manual update through an operator intervention and a custom SQL
statement issued, or it can be built into some processes for automatic re-tries when processes fail. In
this case, the retry counter and logic must be activated.

5.3.4. Implementing the Service Infrastructure

The Class Diagram in Figure 11 illustrates the primary abstractions involved in the development of
the Service Infrastructure. At the heart of each Service is the Concurrency Manager that controls the
number of instances of the Services that need to be started or stopped. The Task Agent provides the
thread support for each instance. The Process Monitor monitors each service.

April 26, 2007 Page 12
System Architecture Document Document Deliverable

/

GRANTS.GOV™

....................

-
i
-—

&P

3: T

E

TudadP ool 8 s ulon

+ (EaEvl e

- _ssosFusnsiie] | veld

* L
+ pilda rConoasiiyleeld il

v geitmoe b halie ey o

At — i L

i T

Gt v g il i e

- i velpe Kooenll inl

= sgeeilownilodc Ubjec = new Dbjecil) {mesflniy] |

- afhwiirgdoen: bockasn = I

<o Lagpe ® Logge padoge
ETELA T TP |

< Eandioiimes Tiv

- prcemile aprien ol

= prooesl meadScninderssl . i

- pEoEmir i er Proeoo-m o bnee

- pecaableredy Precssbiars o

- Wi fal CEgeE = fatem Ot s Cieed

Rrisriurrera il arager
T it

© DTS T OOy
- lagger. Lugger = Logger geil opge.

emeouis{] - woid

ioT s ramd i8] - Boddaas

) e

At Tkl | il

o i e U R ey M e e]
Firmdgeri

4 1 =+ W F

Figure 11: Class Service Infrastructure

The interaction of the Service Infrastructure with the Database tables is implemented using
Hibernate. The Error, Log, Property, and Status classes represent the Hibernate Data Access Objects.
These are shown in the Class Diagram in Figure 12.

April 26, 2007
System Architecture Document

Page 13
Document Deliverable

g

-
= GRANTS.GOV®

clwsy SwroinTelviul oo /

Ero

miniCode. Long
sioiDale. Dalm
mimid. Long
minikexmps. Hing
iflem . Hiurg

ilem Fypm . Hung
mivieaCode . Hing
mveiihLavel. Hung
wiemid. Wunpg
Iype. Humg

IYcpwrty

Patua

armimid. Lomg
iammimfame. Humg
iammim faxl. Hing
miviceTods . Thing
adamid. Humg

peCioiCode)) .Long
peioiDalnf) .Oxm
peCnoi) .Long
peCioiMesapm|) . Hung
osl lamid) . Hung

osl Iemfype]). Hung
peZaivicaCode|) .%hing

osl Yaveuklaveip . Hung
ey demik) . HWurmg

os Fypm|). Hung
=mICnofcde|long) . vod
=ICioOxe|Oaln) . vod
=ICnoid|Leng). void
=mICiofesogs|Hing) . void
=l lem i >hing) . vod

= lem fypuf=leng) . void

= TmiveeCode|Hiung) .void
= ZaveiiyLevel | Hung . vod
= ydem 2 hing) . vod

= fypu|Hing) . void

ouiFxismemi M) . Long
miFxismamifams]) . Zlang
oulPxisme fex|). Hung

ol TsiveeTodu|) . Hung
omi%ydem) . Hing
=m|FPaameis HLong) .voud
=mPaomeeifame|Huing) .vad
=mIFaamee fax|Hing) . void
= ZavenCodalZling). void

= ydem b Humg) . vad

coniad. Yhing
ifo. Tlhing

mams. Hung
orrmi. Hing
mionkfum. Hing
pocemid. Humg
1siyCounl. Humg
mivceTode. Tlang
dalu. Thing
dalwComman. Hing
b fype. Humg
adem . Humg

L=

appd. Flang
id. Lomg
lopOam. Caim
lag® =1, Hung

! gelippd|). HWung

! gwld]) .Lorg

! pgelopCalm]) .Dxm

! pelopfex]).%ing

! mifppHThing .vod
! sl d|long) .vod

! miLopOxe|Cak) .vad

! milopfeJ|Hung . vod

o=iConixd]) .%lang
p=line)) .Shing

puifame) .Zlanp
omiQwsnud) . Humg
pmiPigiyfum|). Hung
puIPoce=t]) . %hing
p=IFPeliyCownl]) . %hing
pulYaiviceCode|) . Hung
p=lHalu). Hung
pulHalwTommaenl]) .%hing
pel%ub fype) . HWomg
pul%ydiem) . Humg
=IConiad|Humg) .void

=l o] Hung) .voud
=mitame|Himng) .vad

=IO wnm|Hung) . vad
=IPuonlyfum[Zlsng). void
=P ocxold | Hiimg) void

= IPuly Cownl|Hing) . void
=TT ode|Hing) . void
=mIHauxAzlang) . vaid

= HausTommmnl|Hung) void
=mITubf yp{Hung) . vad
-I'S-r.mu!«lnn;ﬂ «vad

Figure 12: Class Diagram
The Class Diagram in Figure 13 shows the Service specific classes that need to be implemented to

associate a Service with the Service Infrastructure. A Typical Service requires a ServiceTaskAgent,
ServiceManager, and ServiceProcessiIntializer.

April 26, 2007
System Architecture Document

Page 14
Document Deliverable

y)

-
= GRANTS.GOV”

ola cc Bervios Ut/
™ Bagert Teshagert
BerulosETackegent BervioeaTa chogent
= logger: Logger = Loggergellogge... = lopper: Logger = Logger.gelilogpe...
o Tas) jucld # munTas)) udd
Sorslos ansapcl = I BervlosManagera
= an: Conoumenailanager |- = e
- : 2 drgleknniane |© 90 ConaurencyMansg er
logger: Logper= Logper ge llegge ... ra - legger: Lopger= Lopgerge ILogoe... drglelnnbna

= 4ngle konBne: SzulceMangerd = rew Szl ana...

= drglelonnbnce: Send o lansgers = nevi Send o ans. ..

+ gelnsenae(: SeulceMaragerd P —
+ InlializeQ :ucid getvebne) i Serdcr i ansgech

+ Irilidize) ;ucld

-] :
VMInzECorigmion g oM = InllidizeC origuralong tucid

= InllalizeProce=s)) : vald
+ shurlProce = : vold
+ shpProe s : vold

= Irilidize Procss) Cudld
+ zbxIProcesA) judld
+ 2o Procesa) tudld

Bervios EProoocciniiiall & r
BerviopsProopcdniiallr

- lopger: Logger= Logpergeilogge...
- mmlcCode : SFirg = Ee e Consmnil... - logger: Legger= Logger gellegge ...
- sydem: SHnQ = Serdces ocetanl... - =pulaeCode: Sidrg = SenleCorsnl...
= ssemid: SHrg = Szl Condmil...

geakProx sshgenk) : Takagenl
ge Maxtonoarend Lew] : inl aeskfrozszAgenk) TasAgen|

-
ge IProce sdril A DelayQ @ Inl + pgeMxconumne LewiQ tinl
ge IProce sdd enliorne A :inl + gelProcshilladelyQ inl
ge EzrdceCode(: BHNQ + peElProc2dlonibrinkens() inl
ge BEyzem 60 :Siirg + peEznlaCode:SHrg

+ geEysemdQ SN

s e

Figure 13: Class Service Util

6. Data Architecture

The extended capabilities schema (April 2007) is based on the legacy schema. The Architecture goal
has been to retain the existing schema and make appropriate minor modifications. Additional
columns have been added to some existing tables and a few new tables have been introduced. The
one significant change in the extended capabilities Data Architecture is the usage of BFiles instead of
BLOBs in some of the tables. There are ten tables in the legacy database schema that have the
BLOB data type column. The tables include the following:

TATTACHMENTS
TCOMPETITION
TFAMILY_COVER

TFILE

TFORM

TFORM_DIALECT
TINSTRUCTIONS
TPACKAGES
TSYNOPSISATTACHMENT
TSYSDATA

Among these tables, TATTACHMENTS stores the submitted forms and various data files. TFILE
stores the submitted files in three file types ready for agencies to download.

BFILES are stored in a directory that is SAN mounted. Files on the SAN are backed up. Both the
BFILES and the database are independently backed up. We will look into any coordination issues
that might arise.

April 26, 2007 Page 15
System Architecture Document Document Deliverable

y)

-
= GRANTS.GOV®

Because of the size of data, database transactions against the two tables had the potential to be
constrained and become the potential performance bottleneck of the system during peak application
submission time. BFILE is an alternative to BLOB. It does not store the file itself in the tables, but
instead stores a file locator, which points to the file in the file system of the database server, thereby
saving the processes for transactions across the database. In order to accomplish the changes, two
columns FILE_ID and FILE_LOCATION have been added to the TATTACHMENTS table.

7. Deployment Architecture

The Deployment Architecture for the extended capabilities system is shown below. The current
collection of Apply Agency Servers is being used to deploy the extended capabilities system. A
Group of Servers was dedicated to handle Adobe API related interaction. Figure 14 also shows the
new Google Search Application Cluster. The “BEA Weblogic Cluster” indicated in the Figure 14
indicates a “Grouping or Server Collection”. There is no “clustering” proposed for load balancing or

transparent fail over.
@ Firawall

Storage Area Network
Fabric

[S——] Network Infrusion
Y " NS
Redundant Network
Traffic

BiglP Load balancer
and SSL Accelerator

Oracle Active
Passive Cluster

".//' B,) - o
oF &

BEA WeblLogic
Cluster

Google Search
Appliance Cluster

o —~

@ SO

e
> . o

Y ¥ O

Dedicated Adobe
Application Servers

'
(

,‘W off I‘-.‘

~d Applicant and Agency
DELL Suse Linux Interface and Apply
Mail Server Processing Servers

Figure 14: Deployment Architecture
Each Weblogic application server will deploy four managed servers corresponding to search, apply,
agency system-to-system (Agency S2S), and application system-to-system (Applicant S2S) .war
files.

We recognize that the single Mail Server that is being used from the legacy system is a single point
of failure. We will look into providing some redundancy.

April 26, 2007 Page 16
System Architecture Document Document Deliverable

'y

-
= GRANTS.GOV”

8. Acronyms

April 26, 2007
System Architecture Document

Term Definition
API Application Programming Interface
DAO Data Access Objects

EJB Enterprise JavaBeans

HTML | Hyper Text Mark-up Language
HTTP Hyper Text Transfer Protocol
J2EE Java Platform Enterprise Edition
JSP Java Service Page

MVC Model View Controller
PDF Portable Document Format
POJO Plain Old Java Objects

RMI Remote Method Invocation
S2S System-to-System
SQL Standard Query Language
XML Extensible Markup Language

Page 17
Document Deliverable

