

April 26, 2007 Page
System Architecture Document Document Deliverable

i

System Architecture Document

 Grants.gov System
V 2.0

April 27, 2007

April 26, 2007 Page
System Architecture Document Document Deliverable

ii

Table of Contents
1. Overall System Architecture...1
2. Architecture Summary..2
3. Technology Stack ...2
4. Software Architecture Layers...2

4.1. Security Architecture ...3
5. Primary Features of Extended Capabilities Architecture..4

5.1. Google-Based Search ...4
5.2. Adobe Based Forms Processing...7
5.3. Service Infrastructure ...9

5.3.1. Service identities ..10
5.3.2. Service parameters ...11
5.3.3. Application processing parameters, status, and processing information ..11
5.3.4. Implementing the Service Infrastructure ..12

6. Data Architecture ..15
7. Deployment Architecture ..16
8. Acronyms..17

List of Figures
Figure 1: 2007 Grants.gov System Architecture...1

Figure 2: Simplified View of Software Architecture Layers..3

Figure 3: Conceptual Architecture..4

Figure 4: Rendering Synopsis...5

Figure 5: Class Google Search..6

Figure 6: Forms Processing ..7

Figure 7: LiveCycle Forms Architecture ..8

Figure 8: LiveCycle Assembler ...8

Figure 9: Class Adobe Classes..9

Figure 10: Service Infrastructure ..10

Figure 11: Class Service Infrastructure...13

Figure 12: Class Diagram ...14

Figure 13: Class Service Util ..15

Figure 14: Deployment Architecture ..16

April 26, 2007 Page
System Architecture Document Document Deliverable

1

1. Overall System Architecture
The extended capabilities Grants.gov system architecture is based on the previously existing system
architecture. Our approach has been to preserve the healthy components and remove the components
that negatively affect performance and scalability. Legacy opportunity data and application data are
supported through integration at the Data Access layer. In the previously existing System, the Data
Access design continues to allow connectivity to only a single database. The underlying
implementation has been modified to include queries to the legacy Database and the extended
capabilities Database. The Mechanisms are described in more detail in the Design Document.

The schematic below shows the revised Grants.gov system architecture with extended capabilities. It
includes, new, as well as reengineered components. The legend in the schematic indicates the color-
coding that distinguishes the new, reused, and reengineered components. The changes on the client
side include the Adobe Acrobat Reader and the ability to search attachments. On the Server side, the
changes include the introduction of the Adobe LiveCycle forms server, Google Search Appliance,
and the reengineered Apply process.

Figure 1: 2007 Grants.gov System Architecture

April 26, 2007 Page
System Architecture Document Document Deliverable

2

2. Architecture Summary
The extended capabilities Grants.gov system architecture is the result of some strategic and tactical
architectural decisions. The strategic architectural decisions include the following:

• Replacing PureEdge based forms with Adobe based forms.
• Introducing the Google Search Appliance.
• Replacing iPlanet based Queues; Queue Listeners with Plain Old Java Objects (POJO) based

Services.
• Replacing InFlowSuite rule sets and rules with POJO based rules.
• Retaining the current database schema.
• More conscious use of Spring and Hibernate frameworks.
• Streamlining error processing.
• Using the capabilities of the application servers.

The tactical architectural decisions include the following:
• Retaining the current set of Java Service Pages (JSP) and servlets.
• Retaining the current Data Access Objects (DAO) and Hibernate for database interactions.
• Removing embedded Standard Query Language (SQL) and converting to Hibernate objects.
• Removing InFlowSuite dependency.

3. Technology Stack
The revised extended capabilities system is being deployed under Weblogic 8.1.5 and JDK 1.4.1.
Adobe 7.0.8 is being used. Open source frameworks such as Spring and Hibernate form the
foundation on which new components and services are being developed.

4. Software Architecture Layers
The existing system software architecture had no clear separation of layers. Even though several
popular frameworks like struts and Hibernate had been used, there was no clear delineation of
responsibilities between presentation, business/services and data layers. This made the task of
refactoring and reengineering very difficult. The existing code base was quite fragile so that making
large-scale changes jeopardized the delivery of a stable, industrial strength solution in April 2007.

The extended capabilities Grants.gov system architecture includes defined presentation, business, and
data access layers. The schematic shown in Figure 2 provides a simplified view of the new software
architecture layers and the components and services that are part of each layer. Following the Model
View Controller (MVC) paradigm, the reengineered architecture consists of presentation, business,
and data access layers.

The presentation layer will include Spring, MVC, and struts. The search application initially uses the
struts framework at a very rudimentary level. Future releases will take advantage of the frameworks
more comprehensively.

The business layer includes POJO Business Services and infrastructure services. The infrastructure
services include Adobe product API’s, existing InFlowSuite services that are reused and re-factored,
and support for Google search.

April 26, 2007 Page
System Architecture Document Document Deliverable

3

The data access layer will include custom data access components built using the InFlowSuite
utilities including Hibernate’s base data access components. Our goal is to eventually convert all
custom data access components to Hibernate-based data access components.

The extended capabilities system of April 2007 is configured to process only the opportunities
created in the April 2007 extended capabilities system. Figure 2 addresses only the extended
capabilities Architecture. The Architecture for processing IBM Workplace Forms remains intact.
The previously existing Architecture will be used for processing legacy opportunities. Modifications
have been made to the new Search module for users to download the packages created for old
opportunities.

Modifications have also been made to the Grantor User Interface to retrieve old, as well as new,
opportunities. These changes are also discussed in the Design Document.

There is no direct relationship between Spring and Inflowsuite frameworks. Figure 2 shows that
Spring and Hibernate are Infrastructure Frameworks. Currently, the Grantor and Grantee User
Interface components use the Inflowsuite services for implementation. Once the User Interface is
redesigned, this dependency will be removed.

Figure 2: Simplified View of Software Architecture Layers

4.1. Security Architecture
The Security Architecture of the extended capabilities system has not changed from the earlier
system implementation. Changing the Security Architecture was not part of the scope for this
release. When the User Interface is redesigned, the authorization component will be refactored and

April 26, 2007 Page
System Architecture Document Document Deliverable

4

redesigned. Standard Java Authentication and Authorization Service (JAAS) API will be reviewed
for implementation. The implementation of the left navigation bar uses a few Inflowsuite core
classes as well as custom classes. Changes have to be done to remove the core classes.

5. Primary Features of Extended Capabilities
Architecture

One of the key features of the extended capabilities Grants.gov system architecture is the utilization
of the Google Search Appliance to replace the existing “find” functionality. The current find
functionality is limited to searching the metadata associated with Synopsis and Synopsis title. There
was no support in the earlier system for searching the attachments or other website content. Google
Search Appliance offers a more comprehensive solution for implementing search functionality. The
Google Search Appliance is an integrated hardware and software solution that provides a simple
HTTP based GET or POST interface. The Google Search Appliance provides the ability to search
300,000 documents.

The Google Search Appliance-based search has been integrated with the already existing Grants.gov
application using the universally accepted Google User Interface.

5.1. Google-Based Search
There are two parts to the integration of Google-based search into Grants.gov. The first part
involved incorporating the Google-based search solution involved persisting synopsis and
attachments data in a File System (Google Search Appliance is File System based; Google Search
Appliance can search in databases.). This has enabled the Google search engine to crawl and index
the contents. The legacy system was modified and a new component was added to create a new
HTML file for synopsis and save it to the File System. Figure 3 shows the new component as the
File System Persistence Engine. The Google Search Appliance has been configured to “crawl” the
file system and index the contents. The contents in the File System will be arranged in a directory.

Figure 3: Conceptual Architecture

April 26, 2007 Page
System Architecture Document Document Deliverable

5

The second part of integrating Google-based search into Grants.gov involves rendering the search
results. Figure 4 shows the conceptual flow for rendering the synopsis search results.

Figure 4: Rendering Synopsis

The legacy Search module code has been modified and a new Search Handler has been added to pass
search requests to the Google Search Appliance. The same information that is currently used in the
existing system for display is extracted from Google Search Appliance using GSA-JAPI: Java API
for interacting with the Google Search Appliance™. The same Search Result Collection that the
previous user Interface code used to display the result of a search is used to render the search data
returned by Google Search Appliance. The extended capabilities Architecture also provides
enhancements in the form of searching through synopsis attachments.

The class diagram shows the details of the File System Persistence Engine and the Search Handler.
The File System Persistence Engine is implemented as HTMLGoogleableDataPersister and the
Search Handler is implemented as GoogleSearchHandler. The class diagram (Figure 5) also shows
key classes such as OppSynopsisService and SearchAction that have been modified.

April 26, 2007 Page
System Architecture Document Document Deliverable

6

Figure 5: Class Google Search

April 26, 2007 Page
System Architecture Document Document Deliverable

7

5.2. Adobe Based Forms Processing
In the extended capabilities Grants.gov system, Adobe PDF forms technology replaces the PureEdge
based forms. This necessitated changes throughout the previous architecture and code base. PDF
Forms replace the PureEdge forms. The Schematic in Figure 6 shows an overview of the business
process flow associated with Forms Processing.

Figure 6: Forms Processing

There are four main aspects to Forms Processing:

1. Stitching
2. Reader Extension (Assign Rights)
3. Separating Attachments from XML
4. Generating XML from PDF

These are addressed through standard and custom components from Adobe.

Stitching is accomplished through custom Java components. Adobe forms are stored as XDP files;
the Stitching component takes multiple XDP files and produces a single unified XDP file.

Reader Extension allows the read only PDF forms to be presented as PDF forms that can be
completed (filled). This is accomplished programmatically through API’s provided by Adobe.

LiveCycle Forms API is used to extract XML from PDF documents. The LiveCycle Forms
Architecture is presented in Figure 7. The RMI based EJB API will be used to convert a given PDF
document to XML.

April 26, 2007 Page
System Architecture Document Document Deliverable

8

Figure 7: LiveCycle Forms Architecture

LiveCycle Assembler EJB API will be used to separate the attachments from the PDF. The
architecture of the LiveCycle assembler is shown in Figure 8.

When an applicant submits a completed application, a PDF containing the forms and the attachments
gets transmitted from the client side to the server side. On the Server side, the Assembler product is
used to separate the attachments from the forms, and the LiveCycle forms API is used to extract the
XML. The XML is validated against the Opportunity Schema.

Figure 8: LiveCycle Assembler

April 26, 2007 Page
System Architecture Document Document Deliverable

9

Figure 9: Class Adobe Classes

5.3. Service Infrastructure
Using the earlier Grants.gov system, submitted applications are processed using a combination of
Queues, Queue Listeners, and Queue Rules.

April 26, 2007 Page
System Architecture Document Document Deliverable

10

Figure 10: Service Infrastructure

The Service Infrastructure provides a substrate for building POJO-based services that replace the
current InFlowSuite Queues and Queue listeners. Service Infrastructure allows the system, as a
whole, to be rebalanced or reconfigured dynamically by changing the processing parameters of
specific services. It offers the following capabilities:

• Ability to change application processing parameters without stopping or starting the
container.

• Ability to change application processing without interrupting a transaction in progress.
• Location transparency - Ability to deploy services to any container.

To achieve these goals, processing parameters are stored in the database and checked periodically.
Container-level processing parameters are stored in a system parameter table (TParameters), and
checked at startup and when a transaction is completed. Application specific parameters are stored in
the application control table (TStatus) and checked for the next transaction to be processed.

We have carefully analyzed the current workflow and mapped it to a set of autonomous services. The
different Services and their responsibilities are shown in Figure 10. Each Service maps to a
significant step in the Submission Processing workflow, such as Intake, Receiving, Rejection,
Acceptance, and Packaging. The Service Architecture uses a shared File System to store incoming
applications. Once the applications are processed, contents of the application are also stored in
different database tables such as TFile and TAttachments.

The Architecture uses the concepts of Service Identities and Service Parameters to implement
individual services.

5.3.1. Service identities
A Service running in application servers (containers) needs to acquire and know its own identity,
then query the processing parameters assigned to that identity.

April 26, 2007 Page
System Architecture Document Document Deliverable

11

The service name is hard coded into an application. The code performs only one service. The
service identity is acquired by reading the URL of the container in which it is running. Therefore,
only one service of a specific type runs in a container. However, multiple containers may perform
the same service. The ServiceConfigurator Component encapsulates the logic associated with
starting different services on different containers.

5.3.2. Service parameters
The service reads the TParameters table to acquire the concurrency level of the service. When
running, the service will launch as many concurrent threads as the parameter specifies. So, even if
there is only one service in a container, the level of concurrent processing is fully adjustable.

5.3.3. Application processing parameters, status, and processing information
To facilitate the processing and tracking of grant submissions, the TStatus table is used.

Upon creation of a submission in the system by the allocation of a unique id (process_id), a row in
the TStatus table is immediately created, and the status information entered. As the processing
progresses, the status is updated by each individual service that is part of the Submission processing.
The status table is queried by each service to determine the next submission to be processed. To
provide flexibility in processing, the status table may contain several control fields that can be
updated by the system or an operator to control the applications to process. To facilitate the tracking
of applications by the help desk and reporting activity, the status table also contains a few de-
normalized columns that contain submission information stored here redundantly for performance
improvement.

Unique status codes are assigned to each event or submission when they enter a service and exit the
process. The status code is also a “reservation” in such a way that only one instance of a service
grabs the submission and processes it. When the service is completed successfully, the status is set to
the service completion status. The status update is its own independent transaction. To change a
status, a locking mechanism is used that prevents other applications from being affected. The “Select
for update” with the “no wait” clause database technique is used. The select locks the record. Other
queries that attempt to get the same record will then fail immediately and not wait for the record to be
released (no locking). The “commit” must immediately follow the status update statement. All
services have to test for failure when querying a record and a race condition has occurred. This is
accomplished through LockRow, a stored procedure. A ServiceUtility class encapsulates the stored
procedure and provides higher level Java API’s.

Services also implement retry behavior. To implement the retry effectively without blocking a queue,
a delay is built in. The status is reset, or set to a specific retry status, and the retry counter is
increased reliably to stop processing when the limit of retries is reached. The retry mechanism,
combined with the immediate commit of the status update is used to avoid locking the processing
queue and race conditions for the same submission. It also guarantees that the record will be
processed only once despite multiple instances of services on multiple servers.

The status update and record locking mechanism has been carefully isolated as an independent
transaction which does not perform any other business functions, is extremely fast, and is closed by
its own commit or rollback operation. Essentially, the independent transaction consists of:

• Open a transaction
• Select one row and lock it
• Update one row

April 26, 2007 Page
System Architecture Document Document Deliverable

12

• Commit the transaction
• Or in case of failure, rolling back and explicitly releasing the lock
• End of transaction

Other resources and other applications are not affected and cannot be locked by the status update
statement. There are no foreign keys on the status table. Only one row in one table is locked for a
brief moment. The entire operation is designed to be completed in a few milliseconds. The rate of
transactions, (application submissions) even at peak periods, makes it highly unlikely that two
applications reach the same exact state of processing at the same time. If such contention should
occur for a specific row, then the second process trying to access a locked record is designed to wait
and retry. In the meantime, the first operation will be completed and committed and the status will
have changed.

If the database crashes at the exact moment this transaction is opened, the transactions are rolled back
and there are no locks when the database is recovered.

There is no anticipated scenario within the system where the status record would remain locked.

If such a locking event were to occur, for an unanticipated cause, a general monitoring process is
being put in place to report on transactions that remain in a working status over a certain period of
time, (similar to the “stuck” applications in the earlier system). If an application is not being
processed for any reason, the system administrator can change the status manually, by updating the
status table with an ad-hoc tool. If the record is locked, the administrator can override the locks.

Note: The “Select for Update” mechanism has a poor reputation since inexperienced users and
programmers can lock numerous tables and rows with ill-advised transactions or going for lunch
before issuing a “commit” statement. The design for the Grants.gov architecture, as implemented, is
a very controlled and discrete transaction, limited to one record in one table followed by an
immediate commit or rollback. Therefore, the locking of resources is a highly unlikely event and not
a concern.

An alternative to the database based approach, unique selection and locking, can be achieved in the
J2EE stack and locking of records in memory. However, the locking must occur across multiple
independent containers. This is the primary reason to use the database approach.

By updating the status code to a previous status in the processing cycle, the submission is then
eligible again for processing at the next step. It will be automatically selected and re-processed in the
next iteration.

Resetting a status code may be a manual update through an operator intervention and a custom SQL
statement issued, or it can be built into some processes for automatic re-tries when processes fail. In
this case, the retry counter and logic must be activated.

5.3.4. Implementing the Service Infrastructure
The Class Diagram in Figure 11 illustrates the primary abstractions involved in the development of
the Service Infrastructure. At the heart of each Service is the Concurrency Manager that controls the
number of instances of the Services that need to be started or stopped. The Task Agent provides the
thread support for each instance. The Process Monitor monitors each service.

April 26, 2007 Page
System Architecture Document Document Deliverable

13

Figure 11: Class Service Infrastructure

The interaction of the Service Infrastructure with the Database tables is implemented using
Hibernate. The Error, Log, Property, and Status classes represent the Hibernate Data Access Objects.
These are shown in the Class Diagram in Figure 12.

April 26, 2007 Page
System Architecture Document Document Deliverable

14

Figure 12: Class Diagram

The Class Diagram in Figure 13 shows the Service specific classes that need to be implemented to
associate a Service with the Service Infrastructure. A Typical Service requires a ServiceTaskAgent,
ServiceManager, and ServiceProcessIntializer.

April 26, 2007 Page
System Architecture Document Document Deliverable

15

Figure 13: Class Service Util

6. Data Architecture
The extended capabilities schema (April 2007) is based on the legacy schema. The Architecture goal
has been to retain the existing schema and make appropriate minor modifications. Additional
columns have been added to some existing tables and a few new tables have been introduced. The
one significant change in the extended capabilities Data Architecture is the usage of BFiles instead of
BLOBs in some of the tables. There are ten tables in the legacy database schema that have the
BLOB data type column. The tables include the following:

• TATTACHMENTS
• TCOMPETITION
• TFAMILY_COVER
• TFILE
• TFORM
• TFORM_DIALECT
• TINSTRUCTIONS
• TPACKAGES
• TSYNOPSISATTACHMENT
• TSYSDATA

Among these tables, TATTACHMENTS stores the submitted forms and various data files. TFILE
stores the submitted files in three file types ready for agencies to download.

BFILES are stored in a directory that is SAN mounted. Files on the SAN are backed up. Both the
BFILES and the database are independently backed up. We will look into any coordination issues
that might arise.

April 26, 2007 Page
System Architecture Document Document Deliverable

16

Because of the size of data, database transactions against the two tables had the potential to be
constrained and become the potential performance bottleneck of the system during peak application
submission time. BFILE is an alternative to BLOB. It does not store the file itself in the tables, but
instead stores a file locator, which points to the file in the file system of the database server, thereby
saving the processes for transactions across the database. In order to accomplish the changes, two
columns FILE_ID and FILE_LOCATION have been added to the TATTACHMENTS table.

7. Deployment Architecture
The Deployment Architecture for the extended capabilities system is shown below. The current
collection of Apply Agency Servers is being used to deploy the extended capabilities system. A
Group of Servers was dedicated to handle Adobe API related interaction. Figure 14 also shows the
new Google Search Application Cluster. The “BEA Weblogic Cluster” indicated in the Figure 14
indicates a “Grouping or Server Collection”. There is no “clustering” proposed for load balancing or
transparent fail over.

Figure 14: Deployment Architecture

Each Weblogic application server will deploy four managed servers corresponding to search, apply,
agency system-to-system (Agency S2S), and application system-to-system (Applicant S2S) .war
files.

We recognize that the single Mail Server that is being used from the legacy system is a single point
of failure. We will look into providing some redundancy.

April 26, 2007 Page
System Architecture Document Document Deliverable

17

8. Acronyms
Term Definition

API Application Programming Interface
DAO Data Access Objects
EJB Enterprise JavaBeans
HTML Hyper Text Mark-up Language
HTTP Hyper Text Transfer Protocol
J2EE Java Platform Enterprise Edition
JSP Java Service Page
MVC Model View Controller
PDF Portable Document Format
POJO Plain Old Java Objects
RMI Remote Method Invocation
S2S System-to-System
SQL Standard Query Language
XML Extensible Markup Language

